
jdw: Java-Direct3D Wrapper

1

Tutorial 1
Getting started
In the first tutorial we will see an overview of the Java-Direct3D Wrapper (jdw) class library, and how
to create and rotate some basic 3D shapes. For the tutorials, it is assumed that you have the Java 5
SDK installed, and understand Java AWT and Swing. The programs you will create are available in the
jdw.demo package.

Contents
 The class library
 Creating a 3D environment
 Animating the scene

The class library
The diagram below illustrates the classes and interfaces provided by the jdw wrapper.

Light

PointLight DirectionalLight

SpotLight

Primitive

Environment3D

*

*

Vertex

*
Material

RenderMode

NativeCanvas

Canvas

RenderListener

*

jdw: Java-Direct3D Wrapper

2

Environment3D – This class represents a 3D environment. Environment3D objects contain multiple
lights and primitives (both of which are explained shortly). Environment3D objects are placed into
your Swing and AWT programs (it is a subclass of java.awt.Canvas).

Primitive – A Primitive represents a 3D object of arbitrary complexity. A Primitive object
could represent a simple cube, or a complex character in a game. Primitives are made up of a list of
vertices (i.e. Vertex objects).

Vertex – A Vertex represents a single point of a 3D object. For example, to define a cube, you
need 8 vertices, one for each corner of the cube. Each Vertex can have a color which contributes
the color of the associated primitive.

RenderMode – This is an enumeration with constants specifying how the vertices of a primitive
should be interpreted. For exam ple, w ith the “triangle list” m ode, each set of three vertices in the
vertex list make up a triangle of the primitive.

Light – Light objects generate lighting for a scene. There are three types represented as three
different subclasses: PointLight, DirectionalLight, and SpotLight. Lighting is optional, and
is disabled by default. To enable lighting call setLightingEnabled(true) on the
Environment3D instance.

PointLight – A point light is a source light having a specific position and light color. The light is
emitted in all directions.

DirectionalLight – A directional light is a source light where the light appears to come from a far
distance. It shines in a specific direction using a specific color.

SpotLight – A spot light emits a cone of light from a specific position in a specific direction. Like the
other source lights, spot lights have a color.

Material – A material specifies the types and colors of light reflected by a primitive. Equivalent to a
Direct3D material.

RenderListener – RenderListeners receive callbacks just before a frame is rendered. This allows
any required graphical processing to be repeated without requiring extra threads.

jdw: Java-Direct3D Wrapper

3

Creating a 3D environment
We will create a Swing program containing a 3D environment. This program will consist of a single
class which will contain code to create and rotate a cube.

1. Create a new file “ObjectRotator.java” and open it in your favorite text editor.
2. Create a class nam ed “ObjectRotator” extending the class JFrame. The Direct3D wrapper classes

w e’ll be using are in the jdw.graphics package, so add an import statement for this package.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import jdw.graphics.*;

public class ObjectRotator extends JFrame {
}

3. Add some member variables to the ObjectRotator class.

 private Environment3D env;
 private Primitive obj;

4. Add a method named initScene as shown.

 private void initScene() {
 ...

Create an instance of Environment3D which represents the 3D scene.
 env = new Environment3D();

We need to add some objects to the scene otherwise nothing will be visible. Create a cube primitive
and add it to the scene.

 obj = Primitive.createCube();
 env.addPrimitive(obj);

Now we need to setup how the scene will be displayed to the user. To do this we need to define the
“eye” or “cam era” position, and the direction in w hich w e are facing. These position and direction
values are defined in terms of Vector3D objects. We pass the view information to the
Environment3D instance using the setView method.

 Vector3D eyePt = new Vector3D(0f, 0f, -3f);
 Vector3D lookAtPt = new Vector3D(0f, 0f, 0f);
 env.setView(eyePt, lookAtPt);

Now we need to write some standard Swing code to contain the Environment3D object. Add the
following code to complete the initScene method.
 setLayout(new BorderLayout());
 add(env, BorderLayout.CENTER);
 setTitle("Tutorial 1: ObjectRotator");
 setSize(800, 600);
 setLocationRelativeTo(null);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }

jdw: Java-Direct3D Wrapper

4

5. To be able to run the program we need to add a main method. The main method will create
and show the window on the Swing event thread.

 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 ObjectRotator o = new ObjectRotator();
 o.initScene();
 }
 });
 }

6. Open a command prompt and compile ObjectRotator.java.

javac -classpath jdw.jar ObjectRotator.java

7. Run the program with the following command. A cube is displayed in a window.

java -classpath jdw.jar;. ObjectRotator

jdw: Java-Direct3D Wrapper

5

Animating the scene
Right now the scene is not very interesting, we are looking straight at the front of the cube object. A
RenderListener can be implemented to make the cube rotate a little bit every time a frame is to
be rendered.

1. In the initScene method, just after the call to setView, add the following code.

 env.addRenderListener(new RenderListener() {
 public void frameRendering(FrameRenderingEvent e) {
 Matrix worldMat = env.getWorldTransform();
 Matrix rot = Matrix.rotationYawPitchRoll(.005f, -.008f, .005f);
 worldMat = Matrix.multiply(worldMat, rot);
 env.setWorldTransform(worldMat);
 }
 });

The frameRendering method is called just before a frame is rendered. The
rotationYawPitchRoll function is used to rotate the world transform on the X, Y and Z axes.
Angles are specified in radians.

2. Compile and run ObjectRotator.java once again. You will see a more interesting result.

javac -classpath jdw.jar ObjectRotator.java

java -classpath jdw.jar;. ObjectRotator

The Primitive.createCube m ethod autom atically assigned colors to the cube’s vertices.

jdw: Java-Direct3D Wrapper

6

Summary
In this tutorial we have seen how easy it is to get up and running with the Java-Direct3D wrapper.
Some details were ignored in this tutorial (e.g. the world transform), but these will be examined in
later tutorials.

Complete source code
For reference, here is the complete ObjectRotator class described in this tutorial.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import jdw.graphics.*;

/**
 * Creates a cube and places it into an <tt>Environment3D</tt>.
 */
public class ObjectRotator extends JFrame {
 private Environment3D env;
 private Primitive obj;

 /**
 * Creates the 3D scene.
 */
 private void initScene() {
 // Create a 3D environment into which objects can be placed
 env = new Environment3D();

 // Create a cube object and add to the environment
 obj = Primitive.createCube();
 env.addPrimitive(obj);

 // Eye: 3 units back on the Z-axis
 Vector3D eyePt = new Vector3D(0f, 0f, -3f);
 // Look at: the origin
 Vector3D lookAtPt = new Vector3D(0f, 0f, 0f);
 // Set the view using these two points
 env.setView(eyePt, lookAtPt);

 // Automatically rotate the cube
 env.addRenderListener(new RenderListener() {
 public void frameRendering(FrameRenderingEvent e) {
 Matrix worldMat = env.getWorldTransform();
 Matrix rot = Matrix.rotationYawPitchRoll(.005f, -.008f, .005f);
 worldMat = Matrix.multiply(worldMat, rot);

 // Update the world transformation
 env.setWorldTransform(worldMat);
 }
 });

 setLayout(new BorderLayout());
 add(env, BorderLayout.CENTER);
 setTitle("Tutorial 1: ObjectRotator");
 setSize(800, 600);
 setLocationRelativeTo(null);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }

jdw: Java-Direct3D Wrapper

7

 /**
 * Creates a new instance of ObjectRotator on the Swing event thread.
 */
 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 ObjectRotator o = new ObjectRotator();
 o.initScene();
 }
 });
 }
}

